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Abstract: There exists a number of nonparametric model structures specifically developed
for frequency domain modelling of nonlinear systems. Here we consider the nonlinear output
frequency response function (NOFRF) structure, which is a series of input-dependent one-
dimensional functions representing each nonlinear order present in the system. When used to
model parallel Hammerstein systems, the NOFRFs lose their input dependence and become
‘linear’ in structure. In this paper, we extend a linear Gaussian process regression method
to the nonlinear setting, where the pseudo-linear form of Hammerstein NOFRFs can be
exploited by applying standard covariance structures from the linear theory. Compared to the
traditional method of NOFRF estimation, the proposed method can be performed using simple
experimental conditions and shows a significant improvement in estimation accuracy in the
presence of measurement noise. The proposed method can also be adapted to estimate and
remove the effect of transients in the case of non-periodic excitation. Numerical results are
presented which show the veracity of the proposed algorithms for systems with polynomial
nonlinearities of known degree.
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1. INTRODUCTION

In the time domain, nonlinear systems can be described
nonparametrically using a Volterra series representa-
tion (Schetzen, 1980), where each term in the series rep-
resents a different nonlinear order. In the frequency do-
main however, there are several competing representations
which offer different benefits for interpretation and estima-
tion (Rijlaarsdam et al., 2017), (Cheng et al., 2017).

One of the more natural approaches in the frequency
domain is to apply multidimensional Fourier transforms
to each Volterra series term, producing the so-called Gen-
eralized Frequency Response Functions (GFRFs) (George,
1959). Due to the complicated multidimensional nature of
the GFRFs, an alternate model structure was proposed
by Lang and Billings (2005) which contains only one-
dimensional frequency functions. These new quantities,
known as ‘nonlinear output frequency response functions’
(NOFRFs), have a more intuitive interpretation from lin-
ear system theory, however the functions are input de-
pendent in general. The representation has found use in
fault detection applications (Peng et al., 2007), (Cao et al.,
2013), (Xia et al., 2015) as well as nonlinearity detection
(Lang and Peng, 2008).

The NOFRF model proposal in Lang and Billings (2005)
was accompanied by a data-driven identification algorithm
we call the ‘traditional method’, which requires multiple
experiments on the system under conditions that may not
be possible in practice, and employs a least squares solu-
tion that will be sensitive to noisy measurements. In the

special case of parallel Hammerstein systems, however, it
may be possible to perform more sophisticated estimation,
since the NOFRFs become independent of the applied
input, and the form of the functions closely resembles that
of the underlying linear filters in the system. This property
allows us to borrow well-developed concepts from linear
identification theory.

In this paper, we develop a Gaussian process regression
method for estimating Hammerstein NOFRFs, which can
be seen as an extension to the linear frequency domain
method outlined in Lataire and Chen (2016). The linear
method is itself a frequency domain interpretation of the
popular Bayesian regularization approach for impulse re-
sponse estimation, introduced in Pillonetto and De Nicolao
(2010). By framing the NOFRFs as normally distributed
quantities with standard prior covariance structures, we
can estimate all NOFRFs in a regularized fashion using
only one experiment and with less restrictions than the
traditional method. Numerical examples reveal that the
newly proposed method is also significantly less sensitive
to measurement noise than traditional estimation. The
more general case of non steady-state data is also consid-
ered, where the regularized approach can be adapted to
minimize the effect of transients on NOFRF estimation.

The proposed method is distinct from other parallel Ham-
merstein identification algorithms in that it is a fully
nonparametric method applied directly in the frequency
domain. Traditionally, the linear dynamic and nonlinear
blocks could be estimated separately and parametrically
in an iterative scheme (Gallman, 1975; Schoukens et al.,



2011), however the resulting models do not provide di-
rect intuition on frequency domain behaviour. More re-
cently, Gaussian process regression has been applied to
Hammerstein identification in the time domain (Risuleo
et al., 2017), but the approach was limited to a single
Hammerstein branch.

The paper is organised as follows. Section 2 defines the nec-
essary notation for complex normal distributions. Section
3 presents the NOFRF model and traditional identification
scheme from Lang and Billings (2005). Section 4 develops
the regularized method using Gaussian process regression,
and the newly proposed method is evaluated alongside
the original algorithm through numerical simulations in
Section 5. Finally, conclusions are drawn in Section 6.

2. COMPLEX NORMAL DISTRIBUTIONS

A complex random vector, X, is said to be complex
normally distributed if its real and imaginary parts are
normally distributed. The properties of complex normally
distributed quantities are largely the same as for the real
case, and the interested reader is directed to Schreier and
Scharf (2010) for a thorough treatment. In this section, we
define the notation adopted in this paper, and present the
relevant properties for Gaussian process regression.

Definition 1. (Augmented vector). For a complex column

vector, X, the augmented vector is defined as X̃ =
[XTXH ]T , where T and H denote the transpose and
Hermitian transpose respectively.

Definition 2. (Augmented mean and covariance). A com-
plex normally distributed vector, X, is denoted by

X ∼ CN (µ,Σ),

where µ = E{X̃} is the augmented mean, and Σ = E{(X̃−
µ)(X̃ − µ)H} is the augmented covariance, which can be
decomposed into covariance and relation functions, K and
C, as

Σ =

[
K C
CH K

]
with K = E{(X −E{X})(X −E{X})H}
and C = E{(X −E{X})(X −E{X})T }.

Definition 3. (Complex circular distributions). A complex
random vector, V , is complex circular if and only if µ = 0
and C = 0.

For the following properties, consider A ∼ CN (µA,ΣA)
and B ∼ CN (µB ,ΣB)

Property 1. (Independent Sum). For A and B indepen-
dent and of equal dimension, their sum is distributed as

A+B ∼ CN (µA + µB ,ΣA + ΣB). (1)

Property 2. (Hadamard Product). For a complex vector U
with equal dimension to A, the Hadamard product U ◦ A
is distributed as

U ◦A ∼ CN (Ũ ◦ µA, (Ũ ŨH) ◦ ΣA). (2)

Property 3. (Conditional Distributions). If A and B are
jointly (Gaussian) distributed, the conditional distribution
of A given B is given by

A|B ∼ CN
(
µA + ΣABΣ−1

B (B̃ − µB),ΣA − ΣABΣ−1
B ΣBA

)
,

(3)

where ΣAB = E{(Ã− µA)(B̃ − µB)}.

Fig. 1. Equivalent block structure of the NOFRF model

3. THE NOFRF MODEL

3.1 Model definition

Let u(t) and y0(t) be discrete, noiseless input and out-
put measurements from a nonlinear system, where t =
0, 1, . . . , N − 1. The N -point discrete Fourier transforms
(DFTs) of u and y0 will be labelled U(k) and Y0(k),
where k indicates the frequency bin. The NOFRF model
definition in Lang and Billings (2005) assumes that the
frequency domain measurements are transient-free (esti-
mation in the presence of transients is discussed here
in Section 4.2), i.e. the input to the system is periodic
in N and has been applied for an infinitely long period
before measurements were taken. In this case, the noise-
less steady state output spectrum is given by,

Y0(k) =

M∑
m=1

Ym(k) =

M∑
m=1

Gm(jωk)Um(k)

where Um(k) =
1/
√
m

(2π)m−1

∑
k1+...+km=k

m∏
i=1

U(ki).

(4)

In (4), Gm(jωk) is the m’th order NOFRF at frequency
ωk given by the k’th DFT bin. The quantities Um(k) are
nonlinear extensions of the input spectrum, which are seen
to be DFTs of the input raised to the m’th power, i.e.
um(t). The equivalent NOFRF block structure is given in
Figure 1, showing the intuitive interpretation of NOFRFs
as ‘filters’ on the nonlinear input quantities.

In this paper, we will also consider the effect of white
output measurement noise on the identification. Thus, the
observed output spectrum is given by

Y (k) = Y0(k) + V (k), (5)

where V (k) is assumed to be complex circular noise with
covariance σ2

vI, where I is the identity matrix.

3.2 The Hammerstein case

The NOFRFs are input-dependent in general, since they
act on exponents of the input rather than the input
directly. In the special case of a Hammerstein system
with polynomial nonlinearity (Figure 2), the frequency
functions become independent of the applied input and
will be scaled versions of the system’s linear filter, H(jω).
The reasoning can be easily seen by comparing Figure
1 with the rearranged Hammerstein structure in Figure
3. The two block structures will be equivalent if we set
Gm(jω) = amH(jω) ∀m. The same logic also applies to
parallel Hammerstein systems, where the NOFRF at each
nonlinear order is formed from a linear combination of the
filters in each parallel branch.



Fig. 2. Block structure of a Hammerstein system with
polynomial nonlinearity

Fig. 3. Alternate block structure for a Hammerstein system

For Hammerstein and parallel Hammerstein systems, the
NOFRFs can be treated as linear filters for identification,
and the resulting model will be valid regardless of the
system input. This is the case which will be considered
in this paper.

3.3 Identification using multi-level excitation

Lang and Billings (2005) proposed a data-based identifi-
cation method which requires the system to be excited
multiple times by scaled versions of a prototype input
signal. Labelling the unscaled input as u∗(t), the method
requires the system to be excited q times by the input
signals,

αiu
∗(t), i = 1, . . . , q,

where q ≥ M and α1, . . . , αq are positive constants. The
excitations will produce q corresponding output frequency
responses which are denoted as Yq(k).

Given the model structure in (4), the NOFRFs can be
obtained by forming a linear system for each excited
frequency, i.e.Y1(k)

...
Yq(k)

 =

α1U1(k) . . . αM1 UM (k)
...

. . .
...

αqU1(k) . . . αMq UM (k)


G1(jωk)

...
GM (jωk)

 , (6)

where U1, . . . , UM are the nonlinear spectral quantities
corresponding to u∗(t). Solving each system in a least
squares sense will provide NOFRF estimates at the excited
frequencies.

There are several disadvantages of this traditional estima-
tion method:

• Data collection may take a long time to perform,
requiring at least M experiments which must reach
steady state before measuring.
• The method cannot be used in cases where the input

is not precisely controlled.
• The least squares solutions will be sensitive to mea-

surement noise.
• Choices for the quantity and value of scaling param-

eters, αi, are arbitrary in nature.

4. GAUSSIAN PROCESS REGRESSION FOR
NOFRFS

Taking inspiration from the linear case in Lataire and Chen
(2016), a regularized estimation method can be developed

within the Bayesian perspective, with a (complex) Gaus-
sian assumption on our unknown quantities. To achieve
this, some assumptions and notation must first be clarified.

Assumption 1. (System structure). The system of interest
admits a parallel Hammerstein structure, where the non-
linear blocks are accurately represented by polynomials
with a known maximum degree, M . Thus, there exist
nonzero NOFRFs up to the M ’th nonlinear order.

Remark 1. In the case where M is unknown, or the non-
linearities are not polynomial in nature, there are many
established order selection methods, e.g. cross-validation,
which can be applied to select an appropriate M .

Notation 1. Let k be the vector of DFT bins excited by
the input, such that ωk are the corresponding excited
frequencies. The parameter vector to be estimated for the
m’th order NOFRF will then be Gm(jωk).

Assumption 2. (Independent Gaussian NOFRFs). Assume
that each NOFRF parameter vector is a Gaussian process
with zero mean, i.e.

Gm(jωk) ∼ CN (0, αG,mΣm), m = 1, . . . ,M, (7)

where αG,m > 0 and Σm is constructed from covariance
and relation functions, Km and Cm. Furthermore, assume
that all NOFRFs are independent of each other.

Recalling that parallel Hammerstein NOFRFs can be
interpreted as linear filters, we are free to use the same
covariance structures for Σm as were used in Lataire
and Chen (2016). Here we consider the frequency domain
equivalent of the Diagonal Correlated (DC) kernel, which
was originally developed for Bayesian impulse response
estimation (Pillonetto et al., 2014). For continuous time
systems, the frequency domain covariance is given by

Km(jωx, jωy) =
1

bm + j(ωx − ωy)
. . .

×
( 1

am + bm/2 + jωx
+

1

am + bm/2− jωy

)
,

Cm(jωx, jωy) = Km(jωx,−jωy),

(8)

where am, bm > 0 are tunable hyperparameters describing
the m’th order frequency function.

Theorem 1. For the NOFRF model defined in (4) and (5)
with Gaussian Gm given by (7), the vectorized output
spectrum, Y (k), is distributed as,

Y (k) ∼ CN (0,ΣY ),

where ΣY =

M∑
m=1

ΣY,m + σ2
vI

and ΣY,m = αG,m(Ũm(k)Ũm(k)
H

) ◦ Σm

(9)

Proof 1. Follows directly from Assumption 2 and Proper-
ties 1 and 2 �

The NOFRF vectors are now jointly distributed with
Y (k), and the Bayesian framework allows computation of
maximum a posteriori (MAP) estimates for each Gm.

Theorem 2. The MAP estimate of Gm(jωk) is given by,

Ĝm(jωk) = αG,mΣmdiag
(
Ũm(k)

H)
Σ−1
Y Ỹ (k), (10)

where diag(X) denotes a diagonal matrix with diagonal
X.



Proof 2. Acknowledging the independence of each NOFRF,
the m’th order NOFRF and output spectrum are jointly
distributed as,[

Gm(jωk)
Y (k)

]
∼ CN

([
0
0

]
,

[
Σm ΣGmY

ΣY Gm
ΣY

])
, (11)

where the joint covariance is computed as,

ΣGmY = E
{

˜Gm(jωk)Ỹ (k)
H}

= E
{

˜Gm(jωk)
[

˜Gm(jωk)
H

◦ Ũm(k)
H]}

= αG,mΣmdiag
(
Ũm(k)

H)
, (12)

using (4), (5) and Assumption 2. Now the MAP esti-
mate will be the mean of the conditional distribution,
Gm(jωk)|Y (k), which is given by Property 3 as

E
{
G̃m(jωk)|Ỹ (k)

}
= ΣGmY Σ−1

Y Ỹ (k). (13)

Combining (13) with (12) yields the result in (10). �

4.1 Covariance hyperparameter tuning

The hyperparameters describing the covariance of each
NOFRF must be tuned on the available data prior to esti-
mation. For an M ’th order model, the DC hyperparameter
vector will be

η = [σ2
v η1 . . . ηM ],

ηm = [αG,m am bm].

As in the linear case, the tuning process can be achieved
by maximizing the log marginal likelihood of the hyperpa-
rameters with respect to the observed output (Lataire and
Chen, 2016), i.e.

η̂ = arg min
η
Ỹ (k)

H
Σ−1
Y (η)Ỹ (k) + log det ΣY (η). (14)

4.2 Estimation in the presence of transients

Unlike the traditional multi-level excitation method, the
regularized approach can be modified to remove the effect
of transient functions in estimation, allowing identification
of NOFRFs in the case of non-periodic or non-steady-state
measurement data.

It was shown in Lataire and Chen (2016) that in the
linear case, transient functions result from the difference
ud(t) = u(t)− u(t+N) for −∞ < t < 0. Considering now
the NOFRF case and observing Figure 1, it is clear that
for a non-periodic u(t), um(t) will also be non-periodic,
and there will be a transient function at each nonlinear
order. We can use this information to update the model
equation in (4) as follows:

Y0(k) =

M∑
m=1

Gm(jωk)Um(k) + Tm(k), (15)

where Tm is the m’th order transient function.

For a white noise input u(t), it was shown in the linear
case that the transient covariance is approximately propor-
tional to the system covariance (Lataire and Chen, 2016).
This result also extends to the NOFRF case for parallel
Hammerstein systems.

Assumption 3. The distribution of the m’th order tran-
sient function can be approximately modelled as,

Tm(jωk) ∼ CN (0, αT,mΣm), (16)

where αT,m ∈ R+ is a scaling hyperparameter.

Assumption 4. Assume that the Gaussian transient func-
tions are independent of each other and all NOFRFs.

The distribution of the output spectrum can now be
updated accordingly, giving

ΣY =

M∑
m=1

ΣY,m + σ2
vI,

ΣY,m = αG,m(Ũm(k)Ũm(k)
H

) ◦ Σm + αT,mΣm.

(17)

Hyperparameter tuning can still be performed using (14),
with additional hyperparameters in the optimization, i.e.

ηm = [αG,m αT,m am bm].

Finally, the MAP estimates for each Gm(jωk) will remain
as in Theorem 2, using the updated definition of ΣY
in (17). Furthermore, MAP estimates of the transient
functions can also be obtained via the same logic, yielding

T̂m(jωk) = αT,mΣmΣ−1
Y Ỹ (k). (18)

5. NUMERICAL EXAMPLES

5.1 Simulation settings

Numerical simulations were performed to compare the
performance of the proposed Gaussian process regression
or ‘regularized’ method against the traditional method of
multi-level excitation. All simulations used the parallel
Hammerstein structure given in Figure 4, where each
parallel branch represents a single nonlinear order and can
be switched in or out of the system. With such a structure,
the NOFRFs are directly equal to the linear filter in their
corresponding branch.

The filters, G1, G2 and G3, are constructed as 2nd order
Chebyshev filters with resonant modes at 14.4 Hz, 22.1 Hz
and 18.2 Hz respectively. The sampling frequency is set at
200 Hz, and the input in any given experiment is a random-
phase multisine which is periodic in N = 128 samples. The
band of excitation for the multisine is constructed so as to
avoid aliasing in the output spectrum. The output error, e,
is a Gaussian white noise vector added in each experiment
to provide the required signal-to-noise ratio (SNR).

5.2 Comparison of traditional and regularized methods

Three 1000-run Monte Carlo studies were performed on
the two estimation methods to determine their relative
accuracy. The studies were:

Fig. 4. Parallel Hammerstein structure used for numerical
examples



(1) M = 2 (G1 and G2 branches) with SNR = 40dB
(2) M = 2 (G1 and G2 branches) with SNR = 20dB
(3) M = 3 (all branches) with SNR = 40dB

Note that while both methods used periodic multisines
as input, the multi-level excitation method used the mini-
mum requirement of M differently scaled inputs, requiring
M experiments. In contrast, the regularized method used
only one input and experiment, such that data collection
is faster by a factor of M , and the estimation is performed
on a dataset which is smaller by a factor of M .

For the comparison, all estimation data were taken from
the steady-state portion of the experiment, i.e. there were
no transient components in the output response.

To visualise performance in each Monte Carlo study, Fig-
ures 5, 6 and 7 plot the true NOFRF magnitudes alongside
the central 95% intervals (shaded) from each estimation
method. For all studies, the regularized method produced
tighter intervals which are more centred around the true
NOFRF, despite using significantly less data in the es-
timation. The results show a clear accuracy benefit for
the proposed method when output measurement noise is
present in the system, which can be attributed to the ablity
of regularized methods to significantly reduce estimation
variance at the price of a small bias (Pillonetto et al.,
2014). The bias here is small but evident, particularly at
the resonance peaks of each NOFRF.

5.3 Regularized estimation with transients

While the traditional multi-level excitation method cannot
estimate or remove the effect of transients, it was shown in
Section 4.2 that the regularized approach can be modified
to consider transients in the Gaussian process regression.
This allows us to estimate the NOFRFs and their cor-
responding transients, thereby increasing the accuracy of
estimation for non-periodic or non steady-state data.

To demonstrate this capability, the modified method in
Section 4.2 was applied to the simulated system of Figure

Fig. 5. Magnitude intervals for M = 2 and SNR=40dB

Fig. 6. Magnitude intervals for M = 2 and SNR=20dB

Fig. 7. Magnitude intervals for M = 3 and SNR=40dB

4, using the G1 and G2 branches and no output noise.
The input multisine was applied for a single period and
preceded by zero initial conditions, producing a transient
in the output response. Using this input/ouput data,
the total transient could be estimated by summing the
transient estimates from each order, i.e.



Fig. 8. True and estimated transient functions for three
input realizations of the test system (M = 2)

T (jω) =

M∑
m=1

Tm(jω)

The true and estimated transient are plotted in Figure 8
for three input realizations, showing reasonable estimation
performance which significantly reduces the effect of the
transients on NOFRF estimation accuracy.

6. CONCLUSION AND FUTURE WORK

This paper demonstrates the benefits of a Gaussian process
regression approach to frequency domain estimation of
parallel Hammerstein systems. Using the NOFRF model
structure, prior covariances for each frequency function
can be chosen and tuned according to linear identification
theory, due to the linear and input-invariant form adopted
by Hammerstein NOFRFs. When compared to the tra-
ditional estimation method of multi-level excitation, the
proposed method has fewer experimental constraints and
can achieve higher accuracy when output noise is present.
The method can also be adapted to estimate and remove
the effect of transients resulting from non steady-state
experiment data.
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